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INTRODUCTION 

The use of coherent anti-stokes Raman scattering (CARS) spectroscopy in 
combustion studies is well documented (refs 1 through 5). Hydrogen is a major 
combustion product of propellants, as illustrated by H2 CARS S-branch transi- 
tions, obtained from both CH^/^O model propellant flames and actual propellant 
flames (refs 6 and 7). 

Because the use of H^ CARS spectra to obtain temperature and concentration 
profiles is limited by the reliability of the spectroscopic constants, a litera- 
ture search was conducted (refs 8 through 11) to find a suitable set of spectro- 
scopic constants, and a set of ab initio calculations were obtained from Erraler. 
The method used by Ermler is described briefly below. A more complete treatment 
is given in the literature (refs 12 through 15). Overall the transition energies 
calculated on the basis of Ermler's constants agreed most closely with our exper- 
imental results, so that particular set of spectroscopic constants was used to 
calculate lU   S- and 0-branches. 

CARS THEORY 

The observed CARS spectrum is, .proportional to the square of the modulus of 
the third order susceptibility, x » which is the sum of a resonant term y , and 
a nonresonant term v , which are related to the vibrationai and electronic dis- 
placement, respectively 

X   = X, + v (1) 

The resonant term is calculated as the sum of Lorentian line shapes of each 
rotational transition 

j 

E K. I /(2Aa). - IF.) (2) 
J     J     J 

given that 

K. = —r a. (Ap.  ) r. (, J; 

where N is the number density, a. is the isotropic polarizability matrix elei.ient 
for the transition, Ap.    is the normalized population difference between the 

Personal communication between W. C. Erraler, Stevens Institute of Technology, 
Hoboken, NJ and J. Fendell, ARDC, May 1983. 



molecular energy levels involved in the transition, oi is the isolated pressure- 
broadened linewidth, and Au. ■ ui - OL - u.. The calculated |x I is first 
convoluted over the laser shades, then over -k  triangular slit function. 

Y is the sum of real and imaginary components x' and x'' > respectively, so 
that 

|x(3)|2 = x'2 + 2x'v + x"2 + v2 (4) 

X1 and x' ' display dispersive and resonant behavior with respect to the detuning 
frequency. Aw.. 

As the concentration of the resonant species is lowered, the cross term 
2x'Xn > which is dispersive, influences the shape of the spectrum.  The observa- 
tion of dispersively modulated spectra allows temperature and concentration to be 
estimated on the basis of model calculations. 

The concentration of various species from the ratio of the total CARS inten- 
sity to the nonresonant intensity at any frequency where resonant transition of 
the species occurs can also be estimated. In broadband CARS, the nonresonant 
susceptibility is usually observed directly from regions where no resonance 
occurs. The spectral distribution of the nonresonant susceptibility, which 
reflects that of u , can be obtained either from measurements of the distribution 
of to or directly from measurements of a nonresonant gas (ref 16). 

RESULTS 

Spectroscopic Constants 

In an effort to find theoretical support for experimental observations, a 
literature search for spectroscopic constants for the X S state of hydrogen was 
conducted. Constants published by Stoicheff (ref 8), Fink et al. (ref 9), 
Herzberg (ref 10), and Huber and llerzberg (ref 11) were available in the litera- 
ture. Another set was obtained by data reduction of the results obtained from 
Erraler. 

In his calculations, Ermler used potential energy curves for the X E state 
of hydrogen calculated by Kolos and Wolniewicz (ref 13). These potential curves 
are obtained by using a generalized James-Coolidge wavefunction with variational 
parameters in elliptic coordinates, which is then used to solve the Schrodinger 
equation by numerical methods. Double precision arithmetic using 15 vibrational 
and 15 rotational levels were used in the calculations. 

Application of Spectroscopic Constants 

The total energy of a molecule is a function of both the rotational and 
vibrational quantum numbers.  The expression is given as 



E(v,J) = to (v + 0.5) -X w (v + 0.5)  + Y u (v + 0.5)  - Z u (v + 0.5)  + 
e ee ee ee 

Bv(J
2 + J) - Dv J

2(J + I)2 + Hv(J
3)(J + I)3 

where 

Bv = Be + a (v + 0.5) + y (v + 0.5) 

D,T = De + f?(v + 0.5) + 6 (v + 0.5)2 v e 

^ " BU + HjCv + 0.5) + H2(v + 0.5)
2 

It is useful to know the values of Bv, D , and H , since they allow us to 
predict the frequencies at which pure rotational (S-branch) and ro-vibrational 
(Q-branch) transitions will occur. 

S-branch = E(l,J+2)-E(I,J) 

0-branch = E(I+1,J)-E(I,J) 

In general, Bv, Dv, and Ilv are approximated by second-order polynomials. 
Stoicheff, Herzberg, and Huber and Herzberg stated these polynomials explicitly, 
but Fink et al. and Erraler stated these quantities at various values of v. In 
order to use these values in a systematic way in calculating S-branch and Q- 
branch specta, values of B D , and H corresponding to v = 0,1,2 were fitted to 
a second-order polynomial. The estimated standard error for these correlations 
ranged between 10"^ and 10-J- for Fink's results and between lO-^1 and L0_ for 
Ermler's results. The values for Bv, Dv, and Hv from all sources are compiled in 
table 1. 

In table 2, the calculated S-branch frequencies are compared to our recently 
obtained experimental results. There is a clear difference among the results 
obtained by using various constants to calculate higher S-branch transitions. 
The constants of Fink et al. and Ermler were used to calculate the transition 
frequencies found in tables 3 and 4, since these particular sets of constants 
agreed most closely with experimental results. 

Calculation of l^ CARS S- and O-Branches 

H~ CARS S- and Q-branches were calculated using Ermler's spectroscopic con- 
stants. The Q-branch results for various temperatures are given in figures 1, 2, 
and 3. The S-branch results shown in figure 4 for the S0(7,5) , transition at 
1815 cm illustrates conditions comparable to those in the *= 1.8 CH/./No0 flame 4'lN2v 

S-branch transitions are labeled using the notation S^J', J''). 



in which it was observed (refs 6 and 7).  In these calculations, a Doppler broad- 
ened linewidth and a 3.0 cm-1 slit function were assumed. 

DISCUSSION 

The recently observed higher S-branch transitions (refs 6 and 7) are com- 
pared to the transition frequencies given by various spectroscopic constants in 
table 2. In all cases, the constants of Fink et al. and Ermler agree more 
closely with experimental results than other constants. For the v = 0 transi- 
tions, the results of Fink et al. and Ermler diverge as the transitions increase 
in frequency. Ermler's results are closer to the experimental results for 
S0(9,7) than those of Fink et al. For S (11,9), the difference between experi- 
mental results and those of Fink et al. is large enough to be experimentally 
discernible. The frequency of the S (11,9) transition has been observed experi- 
mentally at 2131 cm by us (refs 6 and 7) as well as Farrow et al. (ref 17) in 
good agreement with Ermler's value of 2130 cm . The results obtained for v = 1 
do not differ greatly for either set of constants until levels higher than the 
observed transitions are reached. On the basis of present experimental data, 
Ermler's constants agree most closely with the experiment. 

For both v = 0 and v = 1, Ermler's constants predict that the Q-branch tran- 
sitions will be more closely spaced than the results of Fink et al. As seen from 
the computed results (table 3), Ermler's constants predict experimentally dis- 
cernable differences from those at Fink et al. (ref 18) beginning at J,'=6. The 
computed CARS Q-branch spectra (fig. 1 and la) show that above 2500 K, Q-branches 
above J''=6 are significantly populated. Q-branch spectra will be taken to con- 
firm the validity of the spectroscopic constants at these temperatures. 

The results obtained indicate that the set of spectroscopic constants 
obtained from the ab inltio calculations are in better agreement with experi- 
mental results than other sets of constants. 
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Table 1.  Comparison of spectroscopic constants (cm *) 

Huber and 
Constants Herzberg Herzberg Stoicheff Fink et al. Ermler 

Be 60.800 60.853 60.840 60.8318 60.7922 

a 
e 

-2.993 -3.062 -3.0177 -3.0087 -3.0320 

3 
e 

0.025 0.057 0.0285 0.0266 0.0350 

De 0.0464 0.00471 0.04684 0.0471 0.0448 

Be -0.00134 -0.0027 -0.0017 -0.0029 -0.0016 

6e — 0.0004 3 x 10"5 4.5 x 10-4 4.5 x 10"5 

Ho 5.18 x 10-5 — 5.2 x 10~5 5.62 x 10"6 3.23 x 10-5 

Hl 
— — — -1.7 x 10_6 -8.70 x 10_7 

H2 
— — — 4 x 10-7 -2.50 x ID"8 

UB 4395.2 4401.21 4401.21 4401.217 4400.39 

xeaE 117.90 121.33 121.43 121.343 120.814 

yeaE 0.29 0.812 0.892 0.8145 0.7241 

ZeiiE 0. 0. 0. 0. 0. 

Table 2.  Calculation of selected transitions (cm  ) 

Transition3 Experimental Stoicheff Fink et al. Ermler 
Huber and 
Herzberg 

S0(7,5) 1446 1447.67 1447.61 1447.80 1449.83 

S0(9.7) 1809 1817.95 1817.18 1815.08 1822.05 

S0(ll,9) 2131 2145.01 2141.91 2130.32 2150.30 

3^9,7) 1721 1725.42 1719.90 1721.81 1723.13 

5^11,9) 2020 2035.96 2019.02 2019.83 2032.29 

a The transitions are labeled "SV(J'.J'')." 

b The experimental data were taken from CARS data given in refs 7 and 18, 



Table 3.  Computed energies of H2 Q-branch transitions 

V = 0 V = 1 
J Fink et al. Ermler Fink et al. Ermler 

0 4161.18 4161.12 3925.82 3927.00 

1 4155.25 4155.20 3919.99 3920.23 

2 4143.32 4143.40 3908.16 3908.71 

3 4125.21 4125.79 3890.00 3891.52 

4 4100.68 4102.49 3865.00 3868.80 

5 4069.40 4073.65 3832.52 3840.61 

6 4030.94 4039.43 3791.70 3807.21 

7 3984.82 4000.08 3741.56 3768,80 

8 3930.44 3955.85 3680.93 3725.63 

9 3867.15 3907.04 3608.47 3677.99 

10 3794.19 3853.97 3522.70 3626.20 

11 3710.74 3797.03 3421.95 3570.64 

12 3615.89 3736.61 3304.38 3511.69 

13 3508.63 3673.17 3168.01 3449.80 

14 3387.88 3607.17 3010.67 3385.44 

15 3252.49 3539.16 2830.03 3319.12 

16 3101.21 3469.66 2623.60 3251.37 

17 2932.70 3399.29 2388.70 3182.80 

18 2745.56 3328.67 2122.53 3113.99 

19 2538.28 3258.47 1822.07 3045.63 

20 2309.30 3189.39 1484.18 2978.39 



Table 4.  Computed energies of lU S-branch transitions 

V = 0 V = 1 

J' J" Fink et al. Ermler Fink, et al. Ermler 

0 0 354.37 354.13 336.69 336.41 

3 1 587.02 586.74 557.68 557.33 

4 2 814.40 814.22 773.55 773.30 

5 3 1034.65 1034.67 982.47 982.50 

6 4 1246.16 1246.37 1182.79 1183.26 

7 5 1447.61 1447.80 1373.12 1374.15 

8 6 1638.11 1637.69 1552.39 1553.96 

9 7 1817.18 1815.08 1719.90 1721.81 

10 8 1984.89 1979.37 1875.37 1877.15 

LI 9 2141.91 2130.32 2019.02 2019.83 

12 10 2289.56 2268.18 2151.61 2150.14 

13 11 2429.91 2393.64 2274.49 2268.85 

14 12 2565.84 2507.95 2389.67 2377.27 

15 13 2701.09 2612.97 2499.89 2477.29 

16 14 2840.35 2711.12 2608.65 2571.43 

17 15 2989.33 2805.54 2720.27 2662.86 

18 16 3154.84 2900.08 2839.97 2755.49 

19 17 3344.84 2999.35 2973.92 2853.99 

20 18 3568.49 3108.80 3129.26 2963.83 

21 19 3836.30 3234.71 3314.22 3091.35 
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Figure 2,  H CARS Q-branch spectra at 3000 K 
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